

Introduction to Neuroimaging SPINE

Aaron S. Field, MD, PhD Neuroradiology University of Wisconsin-Madison

Updated 6/13/06

Anatomy

Radiographic Anatomy

Cervical Spine – AP View

Cervical Spine – Lateral View

Cervical Spine – Oblique View

Cervical Spine – Open-Mouth (Dens) View

Lumbar Spine – AP View

Lumbar Spine – Lateral View

MRI Anatomy

Source: CW Kerber and JR Hesselink, Spine Anatomy, UCSD Neuroradiology

Cauda equina

Ligamentum flavum

Epidural fat

Spinous process

Intraspinous ligament Dura Sagittal Lumbar Spine

> Retrovertebral venous plexus longitudinal ligament

Vertebral end plate Anterior longitudinal ligament The Intervertebral Disk Nucleus pulposus

Source: CW Kerber and JR Hesselink, Spine Anatomy, UCSD Neuroradiology

Spine Pathology

- Trauma
- Degenerative disease
- Tumors and other masses
- Inflammation and infection
- Vascular disorders
- Congenital anomalies

Evaluating Trauma

- Fracture plain film / CT
- Dislocation plain film / CT
- Ligamentous injury MRI
- Cord injury MRI
- Nerve root avulsion MRI

Plain film findings may be very subtle or absent!

Anterolisthesis of C6 on C7 (Why??)

Fractures of C6 left pedicle and lamina

CT

CT – 2D Reconstructions

Acquire images axially...

...reconstruct sagittal / coronal

26M MVA

Vertebral body burst fx with retropulsion into spinal canal

2D Reformats

Vertebral Artery Dissection/Occlusion Secondary to C6 Fracture

Hyperflexion fx with ligamentous disruption and cord contusion

Nerve root avulsion

Axial

Coronal

Degenerative Disease

Degenerative Disc (and Facet Joint) Disease

Degenerative Disc (and Facet Joint) Disease

Degenerative Disc (and Facet Joint) Disease

Disc bulge, facet hypertrophy and flaval ligament thickening frequently combine to cause central spinal stenosis

Note the trefoil shape of stenotic spinal canal

Disc bulge, facet hypertrophy and flaval ligament thickening frequently combine to cause central spinal stenosis

Note the trefoil shape of stenotic spinal canal

Foraminal Stenosis

Cervical Spinal Stenosis

MRI - Degenerative Disc Disease

Age:

- 20-40 36% have degenerated disc
- 50 85-95% have degenerated disc
- 60-80 98% have degenerated disc
- <60 20% have asymptomatic disc herniation</p>

Conclusion: Abnormal findings on MRI frequently DO NOT relate to symptoms (and vice versa) !!

MRI – Herniated Disc Levels

- 85-95% at L4-L5, L5-S1
- 5-8% at L3-L4
- 2% at L2-L3
- 1% at L1-L2, T12-L1
- Cervical: most common C4-C7
- Thoracic: 15% in asymptomatic pts. at multiple levels, not often symptomatic

Normal Disc

Annular Tear

Herniated Disc

"Asymmetrical Bulging Disc"

Broad-based Herniation

Focal Herniation

Protrusion

Extrusion

Adapted from: "Nomenclature and Classification of Lumbar Disc Pathology: Recommendations of the Combined Task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology," 2001.

Central Disc Protrusion

L5-S1 Disc Extrusion Into Lateral Recess with Impingement of R S1 Nerve Root

Schmorl's Nodes

Cervical Radiculopathy

Lumbosacral Radiculopathy (Sciatica)

Important: A herniated disc at (e.g.) L4-5 may impinge either the L4 or L5 nerve roots!

L5-S1 Disc Extrusion Into Lateral Recess with Impingement of R S1 Nerve Root

Spondylolysis / Spondylolisthesis

Confusing "Spondy-" Terminology

- <u>Spondylosis</u> = "spondylosis deformans" = degenerative spine
- <u>Spondylitis</u> = inflamed spine (e.g. ankylosing, pyogenic, etc.)
- <u>Spondylolysis</u> = chronic fracture of pars interarticularis with nonunion ("pars defect")
- <u>Spondylolisthesis</u> = anterior slippage of vertebra typically resulting from bilateral pars defects
- <u>Pseudospondylolisthesis</u> = "degenerative spondylolisthesis" (spondylolisthesis resulting from degenerative disease rather than pars defects)

Tumors and Other Masses

Classification of Spinal Lesions

- Extradural = outside the thecal sac (including vertebral bone lesions)
- Intradural / extramedullary = within thecal sac but outside cord
- Intramedullary = within cord

Common Extradural Lesions

- Herniated disc
- Vertebral hemangioma
- Vertebral metastasis
- Epidural abscess or hematoma
- Synovial cyst
- Nerve sheath tumor (also intradural/extramedullary)
 - Neurofibroma
 - Schwannoma

Common Intradural Extramedullary Lesions

- Nerve sheath tumor (also extradural)
 - Neurofibroma
 - Schwannoma
- Meningioma
- Drop Metastasis

Common Intramedullary Lesions

- Astrocytoma
- Ependymoma
- Hemangioblastoma
- Cavernoma
- Syrinx
- Demyelinating lesion (MS)
- Myelitis

Classification of Spinal Lesions

Extradural: Vertebral Body Tumor

Extradural: Vertebral Metastases

T2 (Fat Suppressed)

T1+C (fat suppressed)

Extradural: Vertebral Metastases

T2 (Fat Suppressed)

T1+C (fat suppressed)

Vertebral Metastases vs. Hemangiomas

Hemangiomas (Benign, usually asymptomatic, commonly incidental):

Bright on T1 and T2 (but dark with fat suppression) Enhancement variable

<u>Metastases:</u>

Dark on T1, Bright on T2 (even with fat suppression) Enhancement

Vertebral Hemangiomas

Extradural: Vertebral Metastases

Diffusely T1-hypointense marrow signal may represent widespread vertebral metastases as in this patient with prostate Ca

This can also be seen in the setting of anemia, myeloproliferative disease, and various other chronic disease states

Extradural: Epidural Abscess

Extradural: Nerve Sheath Tumor (Schwannoma)

Intradural Extramedullary: Meningioma

Intradural Extramedullary: Meningioma

Intradural Extramedullary: Nerve Sheath Tumor (Neurofibroma)

Intradural Extramedullary: "Drop Mets"

T2

T1

T1+C

Intradural Extramedullary: "Drop Mets"

Intradural Extramedullary: Arachnoid Cyst

T2

Intramedullary: Astrocytoma

Intramedullary: Astrocytoma

Intramedullary: Cavernoma

Intramedullary: Ependymoma

Intramedullary: Syringohydromyelia

Seen with:

- congenital lesions
 - Chiari I & II
 - tethered cord
- acquired lesions
 - trauma
 - tumors
 - arachnoiditis
- idiopathic

Intramedullary: Syringohydromyelia

Seen with:

- congenital lesions
 - Chiari I & II
 - tethered cord
- acquired lesions
 - trauma
 - tumors
 - arachnoiditis
- idiopathic

Confusing "Syrinx" Terminology

- <u>Hydromyelia</u>: Fluid accumulation/dilatation within central canal, therefore lined by ependyma
- <u>Syringomyelia</u>: Cavitary lesion within cord parenchyma, of any cause (there are many). Located *adjacent to central canal*, therefore *not lined by ependyma*
- <u>Syringohydromyelia</u>: Term used for either of the above, since the two may overlap and cannot be discriminated on imaging
- <u>Hydrosyringomyelia</u>: Same as syringohydromyelia
- <u>Syrinx</u>: Common term for the cavity in all of the above

Infection and Inflammation

Infectious Spondylitis / Diskitis

Common chain of events (bacterial spondylitis):

- 1. Hematogenous seeding of subchondral VB
- 2. Spread to disc and adjacent VB
- 3. Spread into epidural space \rightarrow epidural abscess
- 4. Spread into paraspinal tissues \rightarrow psoas abscess
- 5. May lead to cord abscess

Infectious Spondylitis / Diskitis

Infectious Spondylitis / Diskitis

Pyogenic Spondylitis / Diskitis with Epidural Abscess

T1

T2

Spinal TB (Pott's Disease)

- Prominent bone destruction
- More indolent onset than pyogenic
- Gibbus deformity
- Involvement of several VB's

Spinal TB (Pott's Disease)

- Prominent bone destruction
- More indolent onset than pyogenic
- Gibbus deformity
- Involvement of several VB's

Transverse Myelitis

Inflamed cord of uncertain cause Viral infections Immune reactions Idiopathic Myelopathy progressing over hours to weeks DDX: MS, glioma, infarction

Multiple Sclerosis

Inflammatory demyelination eventually leading to gliosis and axonal loss

T2-hyperintense lesion(s) in cord parenchyma

Typically no cord expansion (vs. tumor); chronic lesion may show atrophy

Multiple Sclerosis

Inflammatory demyelination eventually leading to gliosis and axonal loss

T2-hyperintense lesion(s) in cord parenchyma

Typically no cord expansion (vs. tumor); chronic lesion may show atrophy

Cord Edema

As in the brain, may be secondary to ischemia (e.g. embolus to spinal artery) <u>or</u> venous hypertension (e.g. AV fistula)

Spine Imaging Guidelines

- 1. Uncomplicated LBP usually self-limited, requires no imaging
- 2. Consider imaging if:
 - Trauma
 - Cancer
 - Immunocompromise / suspected infection
 - Elderly / osteoporosis
 - Significant neurologic signs / symptoms
- Back pain with signs / symptoms of spinal stenosis or radiculopathy, no trauma: Start with MRI; use CT if:
 - Question regarding bones or surgical (fusion) hardware
 - Resolve questions / solve problems on MRI (typically use CT myelography)
 - MRI contraindicated

Spine Imaging Guidelines (cont.)

- 4. Begin with plain films for trauma; CT to solve problems or to detail known fractures; MRI to evaluate soft-tissue injury (ligament disruption, cord contusion)
- 5. MRI for sx of radiculopathy, cauda equina syn, cord compression, myelopathy
- 6. Fusion hardware is safe for MRI but may degrade image quality; still worth a try
- 7. Indications for IV contrast in MRI:
 - Tumor, infection, inflammation (myelitis), any cord lesion
 - Post-op L-spine (discriminate residual/recurrent disk herniation from scar)
- 8. Emergent or scheduled? Emergent only if immediate surgical or radiation therapy decision needed (e.g. cord compression, cauda equina syndrome)
- 9. Difficult to image entire spine in detail; target study to likely level of pathology
- 10. CT chest/abdomen/pelvis includes T-L spine (no need to rescan trauma pts*)
 * If image data still on scanner (24-48 hours)

Introduction to Neuroimaging SPINE

Aaron S. Field, MD, PhD Neuroradiology University of Wisconsin-Madison